プログラム概要

1.概要

CERNとKEKとの間で結ばれた協定に基づき、2004年から日本人学生の参加が可能となりました。
参加者は、夏の約2か月間、CERNの特定の実験グループに所属して、グループの研究者による指導を受けながら研究を補助し、並行して5週間にわたる講義を受講します。参加する対象となる実験グループには、CERNのLHC加速器を使った高エネルギー物理実験や、原子核物理実験、加速器科学、計算機科学のグループが含まれています。講義では、素粒子物理学、加速器の原理、粒子検出器やデータ処理技術から、ビッグバンやダークマターなどの宇宙物理学に至るまでの広い分野の基礎と現状が、現場で活躍する研究者によってわかりやすく紹介されます。さらにCERNの施設見学や参加学生によるディスカッション、ポスターセッションが催され、学生同士のパーティやフィールドトリップなど各種活動に参加することも出来ます。
なお、日本人学生については、参加に係る費用は渡航費、滞在費を含め全額KEKから支援予定です。

 

2.参加のメリット

  • 世界最先端の素粒子物理学等関連分野の研究の現場が直に体験できる。
  • 世界各国の優秀な学生と交流ができ、多くの外国人の友人を得ることができる。
  • 英語、フランス語等の語学力の強化にも効果があるほか、他の参加者との交流を通じた世界各国の文化や事情にも触れることができ、国際的な感覚を養う上で有益。

 

3.参加する実験分野

 
  • Experimental physics(analysis of data, extraction of signals from data)/ theoretical physics
  • Building and implementing software tools(triggering, data bases, data reconstruction, etc.)
  • Applied physics(building and implementing detectors, lases, cryogenics, signal prosessing)
  • Engineering(electrical, mechanical, data networks, microelectronics)
  • Accelerator and beam physics

 

4.参加する実験の例

Example 1
CMS is planning an upgrade of the muon system in the forward region. One of the technologies under study is the GEM detector that should be able to sustain the high background of neutrons and gammas expected in the high eta region of the experiment in view of the LHC upgrades. In order to validate the GEM as a possible technology for CMS it is fundamental to study the behaviour of the detector under irradiation and a detailed characterization of all the materials and components of the GEM chambers. The aim of the project is the study of the interaction between gas mixture and chamber materials in order to quantify the possible aging of the chamber elements and the collaboration to the tests performed at the GIF for the chamber performance. Samples of all the material will be tested before and after irradiation at GIF to spot potential problems due to the expected background. The study will be performed by Gas Chromatography, SEM-EDS, ionic liquid Chromatography, ICP-Plasma analyses, but also mechanical tests have been considered (elastic, thermic, physical characteristic) with different techniques depending on different composition of materials and aim of analyses. Contribution in data taking and analysis of the results at the GIF facility will be also part of the project.
Example 2
Understanding of the thermal properties of the AEgIS experiment requires collating the measured thermal behavior with simulations of the behavior of the cryogenic apparatus. After a first round of measures implemented in March-May, the apparatus should exhibit improved behavior. The project will validate the measurements of the new system with a variety of simulations and experiments on the heat flow withing the apparatus.
Example 3
In the framework of the HL-CMS upgrade we are testing radiation hardness of different silicon materials produced by Hamamatsu Photonics within the so-called HPK-campaign. An edge-Transient Current Technique, available at the semiconductor lab at CERN (CERN-SSD), is used to measure the instantaneous drift velocity of electrons and holes in the silicon bulk. In eTCT, an ultrashort laser pulse is used to create electron-holes focused in the bulk. The movement of the carriers is followed and the drift velocity calculated. The student will measure microstrip detectors using this technique and simulate results using a simulation developed in-house.
Example 4
The ATLAS first level trigger system will see new challenges in the next data taking years due to increased pile-up and trigger rates. In order to improve the efficiency of the muon trigger, one has to significantly reduce the fraction of the background at the first level of the trigger, particularly in the forward region, where the trigger is currently made only by detectors downstream of the end-cap toroid magnet. Upstream of these detectors, lies the TileCal iron/scintillator sampling hadron calorimeter, which has an outer layer (D-layer) equipped with a special analog trigger output, designed to be used in the muon trigger system. The project subject is to study the usage of the TileCal D-layer analog trigger output to improve the muon trigger efficiency. One has to explore a coincidence between the muon track candidates and the small muon signal in the outer calorimeter layer, which should work in a specific region of rapidity. The physics and computing part is to use the low-bias data samples to estimate the effectiveness of the approach. The hardware part is to study the available output from the calorimeter cells, by making an analog sum of signals coming from two photomultiplier tubes reading the same cell and measure the noise, to see whether the S/N ratio for muons allows us to make an efficient discrimination and coincidence.
Example 5
Study the L1 Trigger Scheme using Micromegas at the NSW ---------------------------------------------------------- The ATLAS Experiment at the LHC is planning an upgrade of the Endcap Muon System to be commissioned in 2018. A key objective of the upgrade is to maintain the present single muon trigger rate without increasing the Pt thresholds even at the highest foreseen luminosities. To accomplish this, participation of the first Endcap station in the Level 1 trigger is necessary. The new trigger system is required to provide a track segment with 1 mrad resolution. The detector choice is a combination of novel Micromegas detectors and Thin Gap Chambers (TGC), both detectors providing trigger and precision information for off-line reconstruction. A new 64-channel ASIC suitable for both detectors is being developed. It will provide trigger information for both detectors. The micromegas-based trigger concept takes advantage of the fine readout pitch (0.450 mm) by considering only the earliest signal arrival from each of the front end ASICs effectively resulting in a system with granularity of 2.88 cm and spatial resolution of order 300 microns when a hit is detected. The summer student will analyze data that have been collected at the H6 beam line of the SPS with a set of 8 10x10 cm2 micromegas detectors. Also, the student will study the feasibility of the trigger scheme using the Monte Carlo that is being developed for the micromegas detectors of the NSW.

 

5.講義内容

今回募集分の講義スケジュールはまだ公開されておりません。ご参考までに2019年のスケジュールを以下よりご覧ください。

Summer Student Lectures@CERN

 

6.滞在中のサポート

参加者の現地における生活上の支援等は、CERNに駐在している高エネルギー加速器研究機構職員が行います。
プログラム参加中の宿泊先については、基本的にCERNの宿舎又は付近の借上アパートになります。CERNの宿舎については、以下を参考にしてください。

CERN hostels