Seminar

seminar

Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure (in English)

  • PLACE Kenkyu Honkan 1F Meeting Room 

The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H0 and the matter density perturbation sigma8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ8 problem, while the presence of tightly coupled dark radiation ameliorates the H0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.


ページ先頭へ戻る