Project Leader: Hajime SAGAYAMA
Under Construction
Project Leader: Reiji KUMAI
In this project, electronic correlation in molecular
crystal systems is being investigated to elucidate
novel phenomena such as superconductivity,
ferroelectricity and charge ordering. One of our
goals is to elucidate the origins of physical properties
from information on the crystal structure, and
so we have performed crystal structure analysis
of various molecular systems including organic
thin films under external conditions.
In the first period of the CMRC, we did a lot of
work on the structural study of organic ferroelectrics.
Recently we have succeeded in making a
high-quality thin film of organic ferroelectric and
evaluated it by using the diffraction of synchrotron
radiation as described below.
In addition, we started the commissioning of
the thin film diffractometer installed in BL-7C, Photon
Factory, KEK. This will accelerate the structural
investigation of thin films.
Project Leader: Hiroshi KUMIGASHIRA
The goal of this project is to design novel physical properties appearing at the heterointerface of strongly correlated oxides. The physical properties arise from strong mutual coupling among the spin, charge, and orbital degrees of freedom in the interface region between two different oxides. In order to control such properties, it is necessary to clarify the interfacial electronic, magnetic, and orbital structures. We are therefore using synchrotron radiation spectroscopic techniques having elemental selectivity to probe these structures in the nm-scale at the oxide heterointerface. For example, the electronic structure at the interface is determined by photoemission spectroscopy (PES) and X-ray absorption spectroscopy (XAS), the magnetic structure by magnetic circular dichroism of XAS, and the orbital structure by linear dichroism of XAS. We aim to design and create novel quantum materials by optimally combining sophisticated oxide growth techniques using laser molecular beam epitaxy (MBE) and advanced analysis techniques using quantum beams.
Project Leader: Masaki FUJITA
Project Leader: Nobumasa FUNAMORI
Both static- and shock-compression experiments
have a long history, and have been closely
related to each other. For instance, Hugoniot
compression curves measured under shock compression
have been used as a pressure scale in
static-compression studies. However, significantly
different phenomena have been often observed in
the two types of experiments for the same samples,
and therefore some researchers consider
that it makes no sense to compare them. For example,
increases in electrical conductivity of some
insulators observed under shock compression
have not been observed under static compression
and some phase transitions observed under static
compression have not been observed in recovered
samples after shock compression. These
discrepancies are likely due to a large difference
in strain rate during compression: 10−6-10−1s−1
during static compression and 106-109 s−1 during
shock compression. There has not yet been
enough cooperation among researchers engaged
in static- and shock-compression experiments
and the relation between the strain rate and the
changes in structure and properties is not understood
sufficiently.
Synchrotron X-ray techniques are powerful
tools for studying the effect of strain rate on the
behavior of materials. High-pressure synchrotron
XRD under static compression has yielded many
important results and significantly contributed to
the development of high-pressure science since
the 1980s. On the other hand, shock-compression
experiments with synchrotron X-rays are still in an
early phase of development. There is an urgent
need to develop time-resolved XRD with a shockwave
driven laser pulse.
In this project, we have gathered a group of
researchers specialized in static- and shock-compression
experiments, and are developing measurement
systems and conducting XRD, XAFS,
and other measurements systematically under
static and shock compression. We are mainly focusing
on phenomena which need an understanding
of the time evolution and/or inhomogeneity,
such as the collision of asteroids, mantle convection,
and seismic activity (in geophysics) and the
deformation and fracture of metals and ceramics
(in materials science). The kick-off meeting was
held in January 2016 and gathered a total of 34
researchers specialized in static- and shock-compression
experiments and XAFS measurements.
Project Leader: Hideki SETO
Tribology is the science of interacting surfaces
in relative motion, which includes the study and
application of the principles of friction, lubrication
and wear. It is closely related to our everyday
life, from live cell friction to engine lubrication and
seismology. It is estimated that the reduction of
energy consumption by the optimization of friction
and lubrication is worth 1.3 trillion yen in Japan,
and thus it is important to understand the fundamental
aspects of tribology. However, elemental
processes can be seen at various spatial scales
from angstrom to km, and the phenomena are essentially
non-equilibrium. Additionally, tribological
phenomena occur at buried interfaces. Thus there
are many unsolved problems, both theoretical and
experimental.
In this project, we intend to utilize neutrons
and muons to investigate friction and lubrication,
because these probes are powerful tools for insitu
investigation of buried interfaces, and also
complementary methods to observe the dynamical
behavior of molecules and molecular assemblies.
Project Leader: Youichi MURAKAMI
Japan is reliant on imported supplies of actinide and rare-earth elements from foreign countries. Thus, there is a risk of a supply shortage of rare elements induced by the export control policy of resource-rich countries and the rapid increase in global demand of these elements. In order to avoid this situation, the functional substance is not composed of the rare elements but it is necessary to exhibit its function by a common element. For the purpose of achieving a strong comeback in materials science of fierce competition, national project "Element Strategy Project" was started from 2012. In the element strategy project, four areas directly competitive to Japanese industry were selected: electronic, magnetic, battery, and structural materials. We are aiming to develop entirely new material that does not use rare elements. Therefore in each material region the formation of the different fields collaborative research center with (1) material creation (2) theory of electronic state (3) analysis and evaluation are required.
For electronic materials region, Tokyo Institute of Technology (representative supervisor: Prof. Shigeo Hosono) was adopted, deputy base of the material evaluation and analysis the KEK (agency supervisor: Prof. Yoichi Murakami). In the Tokyo Institute of Technology for element strategy "TIES", we develop a material open based on successful experience far away from development policy, and pioneer a frontier element of electronic material to build new guidelines of material design, and then by making a material for practical use in the harm less elements it is intended to open up new material science. To achieve this goal, by the support of the theoretical calculations and advanced evaluation technology, we develop the effective system to create new materials, new high performance electronic materials containing no toxic element. In the KEK deputy base, we research the electronic structure, magnetic structure of the system, and the local structure of light elements such as hydrogen and oxygen in the material that material creation group was synthesized, those are precisely determined by using the synchrotron radiation and neutron scattering. The precise electronic structure of the interface and ultra-thin film also can be observed and evaluated by visualization of the depth distribution of electronic and chemical states. We will establish new technique that can further determine the magnetic phase diagram, the degree of spin freedom, identification of the charge state and hydrogen stable position measurement by using the muon.
Project Leader: Kanta ONO