セミナー 2021年

seminar2021

[EX] (Part II) Femtoscopic approach to hadron-hadron interactions

Hadron-hadron interactions are the basic inputs to discuss hadronic molecules and hadronic nuclei. Flavored hadron interactions, however, are generally difficult to access in standard scattering experiments. Recent research activities on hadron-hadron correlation functions open the ways to systematically access flavored hadron interactions such as Ω, Ξ, − and even (¯. Since the correlation function is given as the average of the wave function squared with the normalized source function weight (Koonin-Pratt formula), it contains the information of the hadron-hadron interaction. Thus, provided that the source function is known, one can examine the hadron-hadron interaction. In this seminar, after a short introduction, I first explain how we can calculate the correlation function in simple two cases; (1) quantum statistics operates but there is no pairwise interaction (Hanbury-Brown–Twiss effects), and (2) non-identical particle pairs with a short-range interaction in an analytic model (Lednicky-Lyuboshits model). Next I explain some other effects such as the Coulomb potential and coupled-channel effects. In the third part, I show some of the recent correlation function data reported by the RHIC-STAR and LHC-ALICE collaborations. These data give constraints on the low-energy scattering parameters, and seem to suggest the existence of bound states in some of the hadron-hadron pairs. In the last part, I will give an outlook.


ページ先頭へ戻る