Quantum Beams

Synchrotron Radiation


Synchrotron radiation is a hig -brilliant light with a wide range of energies ( wavelengths ) from an accelerator. Ultraviolet light and X-rays are used to investigate the configuration of atoms and the behavior of electrons in materials.

Facility >> Photon Factory



Neutrons generated in a proton accelerator can identify nuclei. They are useful to observe the structure and motion of light elements, such as hydrogen and lithium. A part in interest is clearly detected by replacing with isotopes. Their permeability is very strong, and the structure inside materials can be investigated.

Science Division >> KENS
Facility >> Materials and Life Science Experimental Facility



Muons are born as the decay product of pions which were generated by a proton accelerator. Muons are intrinsic magnets, acting as atom-sized compass which can be used to investigate the local magnetic fields in materials. Negatively charged muons are known to emit X-rays unique to each element, and they can be used to for element analysis.

Science Division >> Muon Science Laboratory
Facility >> Materials and Life Science Experimental Facility

Slow Positron


A positron is the antiparticle of an electron and is generated by an electron beam from a linear accelerator. Gamma rays, which are a result of the annihilation of a positron and an electron in a material, and positronium, which is a pair of an electron and a positron, are used to investigate the structure of materials.

Facility >> Slow Positron Facility( Japanese )

Page UP