[QCD Theory Seminar] How time-dependent electric fields affect the Schwinger mechanism?
SPEAKER
Hidetoshi Taya, RIKEN
PLACE
Online (Zoom)
The Schwinger mechanism, the vacuum pair production in the presence of strong electric fields, is one of the most remarkable predictions of strong-field QED. For a constant electric field, it was established by Schwinger in 1951 that the vacuum pair production is driven by quantum tunneling and the resulting production number is non-perturbatively suppressed. The constant electric field configuration is, however, too idealistic. Strong electric fields that may be realized in actual physical situations (e.g., intense lasers and heavy-ion
collisions) must be time- (as well as space-) dependent. Thus, we need to go beyond Schwinger’s constant-field result.
In this talk, I discuss how time-dependence affects the vacuum pair production based on my works. In particular, I plan to discuss (1) the interplay between non-perturbative and perturbative pair production mechanisms and show that the widely-used Keldysh parameter is not the only parameter that controls the interplay [1, 2]; (2) dynamically assisted Schwinger mechanism and Franz-Keldysh effect in strong-field QED based on the perturbation theory in the Furry picture [3]; and (3) spin and chirality production by time-depending electric fields [4, 5, 6].
Refs:
[1] HT, H. Fujii, K. Itakura, PRD 90, 014039 (2014) [2] HT, T. Fujimori, T. Misumi, M. Nitta, N. Sakai, JHEP 03, 082 (2021) [3] HT, PRD 99, 056006 (2019) [4] X.-G. Huang, M. Matsuo, HT, PTEP 2019, 113B02 (2019) [5] X.-G. Huang, HT, PRD 100, 016013 (2019) [6] HT, PRR 2, 023257 (2020)