Symmetry is one of the most fundamental principles in nature, but where does it come from? Considering two distinct physical systems, 1) non-relativistic scattering of neutrons and protons in low-energy QCD and 2) relativistic scatterings of Higgs bosons in two-Higgs-doublet models, we show that the suppression, or maximization, of entanglement leads to enhanced symmetries in the underlying systems. These findings suggest a new paradigm to understand the origin of symmetry from the perspective of quantum information.