Christian Weiss, Jefferson Lab.
Sea quark transverse momentum and parton short-range correlations in QCD
The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions with a range rho ~ 0.3 fm, much smaller than the typical hadronic size. Recent theoretical work has studied the effects of these interactions on the nucleon’s partonic structure at a low scale: (a) Sea quarks have intrinsic transverse momenta up to the scale 1/rho, much larger than those of valence quarks. (b) Sea quarks exhibit short-range correlations of size rho with characteristic quantum numbers (sigma, pi), analogous to NN correlations in nuclei. The effects are demonstrated in a model of low-energy dynamics based on the large-N_c limit of QCD. They can be tested experimentally and have numerous implications for hadron production in semi-inclusive deep-inelastic scattering (HERMES, COMPASS, JLab 12 GeV), dilepton production in hadron-hadron scattering (FNAL, COMPASS, RHIC W, J-PARC), and multiparton processes in high-energy pp collisions (LHC).
Hidehiko Shimada 島田英彦, Okayama Institute for Quantum Physics
[Strings and Fields Group Seminar] Membranes in the bulk from monopole operators in ABJM theory: Large angular momentum in M-theoretic AdS4/CFT3
In the talk, I will consider states with large angular momentum to facilitate the study of the M-theory regime of the AdS4/CFT3 correspondence
(duality between M-theory on $AdS_4 ¥times S^7/Z_k$ and ABJM theory with gauge group $U(N)¥times U(N)$ and level $k$, where $k$ is finite and $N$ is large).
In particular I will discuss near-BPS operators in ABJM theory which correspond to states of membranes with large angular momenta on AdS.
The talk will be based on my work with S.
Kovacs(DIAS) and Y. Sato
(Wits University).
Yasuro Funaki, RIKEN
A new theoretical approach to triple-alpha thermonuclear reaction rate
Recently triple-alpha thermonuclear reaction rate is discussed using some theoretical approaches at low temperature region (below 1 GK), where experimental date is not available. One of them, the calculation via CDCC (Continuum Discretized Coupled Channel) method, in particular, predicts much larger reaction rate by 10^{25} at 0.01 GK, than a standard estimation by NACRE compilation, which is usually utilized for investigating evolutions of stars. It is thus very important to give predictions from other theoretical methods to solve this discrepancy. For this purpose, we introduce a new theoretical approach based on an imaginary-time method, which has an advantage that the knowledge of three-body boundary condition is not required. We show that our results are consistent with the NACRE compilation for whole temperature region from 1 GK to 0.01 GK. We also discuss the reason why the coupled-channel approach gives the much larger reaction rate at low temperature region. This exists in truncation of the channel number adopted for continuum states of 8Be, giving a rise to a large enhancement of the reaction rate at low temperature region.
Yukinori Yasui, Osaka City Univ
CKYと時空の隠れた対称性
Kerr時空を表示する便利な方法は,Boyer-Lindquist座標と呼ばれる極座標を使うことである.このときKerr時空上の測地線方程式,Dirac方程式等々の場の方程式が変数分離するという不思議な性質がある.このようなKerr時空の“隠れた対称性”の正体がConformal Killing-Yano(CKY)テンソルであることを最初に見つけたのはWalker-Penrose(1970 年)である.また,CKYを拡張された対称性として純粋に数学的視点から導入したのは柏田,立花(1968年)たちの研究にまで遡る.本講演では,時空にCKYがどのくらい存在するかという基本的な問題に対する新しいアプローチを紹介したい.また,その応用として,Kerr時空にはCKYがただ一つ存在することが示される.
飛岡幸作, カブリ数物連携宇宙研究機構
A Natural Higgs Mass in Supersymmetry from Non-Decoupling Effects
The Higgs mass implies fine-tuning for minimal theories of weak scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. We show that a singlet with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. We explore the modified Higgs phenomenology of this scenario, which we call the “Dirac NMSSM.”
Pedro Jimenez-Delgado, Jefferson Lab.
Extractions of polarized and unpolarized parton distributions functions
The Jefferson Lab Angular Momentum (JAM) collaboration is a new initiative aimed at the study of the angular-momentum-dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic Scattering will be presented. In the second part of the talk the ongoing update of the JR unpolarized parton distributions will be reported. Different aspects or polarized and unpolarized global QCD analysis will be discussed, including effects due to the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions
Kenta Hotokezaka, Kyoto University
Mass ejection of compact binary merger and the progenitor model of GRB 130603B
A transient powered by the radioactive decay of r-process elements the so-called kilonova is one of the possible observational consequences of compact binary mergers including at least one neutron star. Recent observations discover a kilonova associated with the short GRB130603B.
We explore the possible progenitor of this event based on numerical-relativity simulations and radiative transfer simulations for the dynamical ejecta of binary neutron star (NS-NS) mergers and black hole – neutron star binary (BH-NS) mergers. We show that the only soft EOS models could produce the observed luminosity for the NS-NS ejecta. Our results also show that a BH-NS model is more favorable for GRB130603B than a NS-NS model.
Kentaroh Yoshida, Kyoto University
Holographic description of Schwinger effect
The Schwinger effect is known as a non-perturbative phenomenon in quantum electromagnetic dynamics (QED). The virtual electron-positron pairs can be created as real particles due to the presence of a strong electric field. Recently, Semenoff and Zarembo have proposed a setup to consider the Schwinger effect in the context of the AdS/CFT correspondence. In this talk, after a review of the setup, I will explain a generalization to include magnetic field. I also give another support for the proposal of Semenoff and Zarembo from the viewpoint of quark-antiquark potentials. This talk is based on the collaboration with Yoshiki Sato (Dept. of Phys., Kyoto Univ.) arXiv:1303.0112, 1304.7917.
Holger F. Hofmann, Hiroshima University
Complex probabilities as fundamental law of physics : What weak measurement statistics tell us about the nature of reality
According to quantum mechanics, the measurement of a property A necessarily disturbs the system, so that the value of a different property B obtained after the measurement of A is different from the value of B before the measurement of A. However, it is possible to decrease the measurement interaction to the point where the disturbance of B is negligible. In this weak measurement limit, it is possible to determine the value of A conditioned by the final measurement outcome of B, without disturbing B in the process. The weak values obtained in such measurements have attracted a lot of attention because they can exceed the limits set by the extremal eigenvalues of A [1]. Recently, it has been shown that weak values can be described as averages of complex valued probability distributions, where the possibility of negative real parts not only explains the observation of averages outside the range of eigenvalues, but also resolves a number of quantum paradoxes, which are usually based on the assumption of positive joint probabilities [2].
In this presentation, I show that complex conditional probabilities provide a consistent explanation of all quantum effects. In particular, it is pointed out that complex conditional probabilities describe universal relations between three physical properties that represent the correct quantum limit of classical determinism. In these relations, the complex phase corresponds to the action of transformations between two physical properties along the third. Importantly, a simultaneous assignment of realities to the three different properties is impossible, because measurement interactions change the effective reality of the system according to the laws of dynamics. This relation between complex probabilities and measurement dynamics can be summarized by a quantitative relation which I call the law of quantum ergodicity. As I recently showed, this law can be used to derive the complete Hilbert space formalism, providing a physical explanation of quantum mechanics in terms of the fundamental relation between the reality of physical properties and the dynamics by which they are observed [3]. The results recently obtained from weak measurements of quantum systems might thus be the key that unlocks the mysteries of quantum mechanics.
[1] Aharonov et al., PRL 60, 1351 (1988)
[2] Hofmann, NJP 14, 043031 (2012)
[3] Hofmann, arXiv:1306.2993
Hiroyuki Kamano, RCNP, Osaka Univ.
Dynamical coupled-channels approach to light-flavor baryon