Natsumi Nagata, Department of Physics, University of Tokyo
Limit on the Axion Decay Constant from the Cooling Neutron Star in Cassiopeia A
The observed rapid cooling of the neutron star (NS) located at the center of the supernova remnant Cassiopeia A (Cas A) can be explained in the minimal NS cooling scenario. This consequence may be changed if there exists an extra cooling source, such as axion emission. In this talk, I will first give a brief review on the standard NS cooling theory. I will then discuss the Cas A NS cooling in the presence of axion emission. It turns out that we can obtain a lower limit on the axion decay constant from the Cas A NS cooling observation, which is as strong as existing limits set by other astrophysical observations such as SN1987A. I will also talk about some recent progress on the limits on the axion decay constant from NS surface temperature observations.
Andreas Crivellin, Paul Scherrer Institut
Discovering New Physics with Flavour
In the last years very intriguing hints for New Physics (NP) in the flavour sector have been accumulated. In particular, deviations from the Standard Model predictions in semi-leptonic B decays were discovered, pointing strongly towards the violating of lepton flavour universality (LFU). These hints for NP could be related to the long standing discrepancy in the anomalous magnetic moment of the muon which also measures LFU violation. Furthermore, there are interesting tensions in direct CP violating observables in meson decays, i.e. epsilon’/epsilon and B->Kpi. Even though these observables are not directly related to LFU violation, they could be correlated in a UV complete model. After reviewing the current experimental und theoretical situation, I will discuss possible NP models which can explain the anomalies. As it turns out, leptoquarks are prime candidates for such an explanation und I will present some interesting UV completions, including one based on the famous Pati-Salam gauge group.
Martin Hoferichter, Institute for Nuclear Theory, University of Washington
Searching for physics beyond the Standard Model with lepton dipole moments
The longstanding discrepancy between measurement and Standard Model prediction for the anomalous magnetic moment (g-2)/2 of the muon, as well as the recently emerging tension in the electron g-2, could be considered indications that physics beyond the Standard Model is lurking in lepton dipole moments. To decide this issue conclusively, both improved measurements and theoretical predictions are required. In view of the expected improvement by a factor of 4 at the Fermilab muon g-2 experiment, as well as the upcoming Muon g-2/EDM experiment at J-PARC, this presents a challenge to theory, with current uncertainties almost exclusively dominated by hadronic corrections to about equal parts from hadronic vacuum polarization and hadronic light-by-light scattering. In the talk, I will review the present status of the magnetic dipole moments, especially their Standard Model prediction, and discuss possible connections with electric dipole moments.
初貝安弘氏, 筑波大学
[11th KEK joint colloquium] 仮想と実在をつなぐバルクエッジ対応
2016年度のノーベル物理学賞の対象となり、近年多くの興味を集めているトポロジカル相はその名の通りトポロジカルな量で相が特定されることを最大の特徴とする。しかし実は多くの場合、そのトポロジカルな量は実験では直接観測できない。つまり、見えない! 実際に観測されるのは表面状態などのいわゆるエッジ状態(局在状態)であり、境界を見てバルクを想像するのである。トポロジカル絶縁体の角度分解光電子分光(ARPES)実験で観測する表面状態がその典型例である。
このバルクのトポロジカル量とエッジ状態との関係は「バルクエッジ対応」と呼ばれ、量子ホール効果での発見以来多くの量子系で確認されてきたが、誘電体中の古典電磁場であるフォトニック結晶でもバルクエッジ対応に従う局在状態が観測されたことはある種の驚きであった。しかし、振り返ればバルクのトポロジカル量はいわば仮想的存在であり、実在するのはエッジ状態であると考えれば、これは今日、必然とも言える。
非自明なエッジ状態(局在状態)の起源はバルクの固有モードの準位交差(ディラックフェルミオン)とその破れ(質量)であり、古典系であっても、エッジ状態が現れるバルクギャップ以下のモードで定義される仮想的な(非可換)ベリー接続が定めるトポロジカル数は観測されるエッジ状態を予言する。
この発想は、近年、広く適用され量子系はもとより多様な古典系、古典電磁場、古典力学系や電気回路、さらに気象現象にまで適用されている。仮想と実在とに橋を架けるバルクエッジ対応は至るところにある。講演では概念の紹介からはじめて多様な例を紹介したい。
Keiju Murata, Nihon University
Einstein Rings in Holography
Clarifying conditions for the existence of a gravitational picture for a given quantum field theory (QFT) is one of the fundamental problems in the AdS/CFT correspondence. We propose a direct way to demonstrate the existence of the dual black holes: imaging an Einstein ring. We consider a response function of the thermal QFT on a two-dimensional sphere under a time-periodic localized source. The dual gravity picture, if it exists, is a black hole in an asymptotic global AdS4 and a bulk probe field with a localized source on the AdS boundary. The response function corresponds to the asymptotic data of the bulk field propagating in the black hole spacetime. We find a formula that converts the response function to the image of the dual black hole: The view of the sky of the AdS bulk from a point on the boundary. Using the formula, we demonstrate that, for a thermal state dual to the Schwarzschild-AdS4 spacetime, the Einstein ring is constructed from the response function. The evaluated Einstein radius is found to be determined by the total energy of the dual QFT. Our theoretical proposal opens a door to gravitational phenomena on strongly correlated materials.
Miguel A. Vazquez-Mozo, Universidad de Salamanca
Anomalous fluids from differential geometry
In this talk I will discuss how differential geometry methods can be applied to the computation of the equilibrium partition function of anomalous fluids, as well as their associated currents. In the case of systems with spontaneous symmetry breaking, a direct calculation of the covariant currents is possible without relying on a previous evaluation of the, usually cumbersome, WZW effective action of Goldstone bosons. As an example, I will present the computation of the anomalous transport coefficients of a two-flavor chiral hadronic superfluid.
Hiroyuki Ishida, KEK
Baryogenesis in the nuMSM
The nuMSM is an extended standard model only with three right-handed neutrinos. The characteristic feature of the model is the masses of additional right-handed neutrino is constrained up to the electroweak scale. By this restriction, we cannot simply apply the leptogenesis scenario to produce the lepton asymmetry for the baryogenesis though sphaleron effect. However, the enough amount of the lepton asymmetry can be produced via another mechanism triggered by right-handed neutrino flavor oscillation. In this talk, I will explain the detail of the mechanism and dependence on the initial condition.
Tomohiro Fujita, Kyoto University
[Cosmophysics seminar] Ways to Hunt Axion Dark Matter: Observation and Experiment
Identification of dark matter has been an outstanding problem in physics for decades, and axion (or axion like partciles) is its candidate with great motivations. A number of observations and experiments have tried to detect axion by using the axion-photon conversion by assuming the axion is coupled to photon, while no signal yet to be found. In this talk, I will discuss new techniques to search for axion dark matter by focusing on another phenomena, birefringence, which is caused by the same coupling. The polarimetry observation of protoplanetary disks puts the best constraint on ADM for fuzzy dark matter mass (m = 10^{-22}eV). I also propose a table-top laser-cavity experiment as well as using gravitational wave interferometers to search in the intermediate mass range (10^{-17}eV < m < 10^{-10}eV).
Aldo Deandrea, Lyon 1 University
Fundamental strong dynamics beyond the Standard Model in the electroweak sector
Modern Composite Goldstone-Higgs models bases on a fundamental fermionic theory are promising candidates to dynamically and naturally generate the electroweak symmetry breaking. Apart from the Higgs boson other particles are present in the low energy spectrum. I will discuss the phenomenological implications of this class of models.
Sekiguchi Toyokazu, KEK
Smallest haloes in wino dark matter